
AD-Ai46 844 SOFTWARE TEST HANDBOOK(U) BOEING AEROSPACE CO SEATTLE i/i
WA ENGINEERING TECHNOLOGY DIV E PRESSON MAR 84
RADC-TR-84-53-VOL-i F3@602-82-C-e959

UNCLASSIFIED F/G 9/2 NL

m EElEEllllllKmh|hhE|hE|hhEI
I llfllfflfflfflfllf
IIIIIIIIIIIIIu
IIIIlE

_b kN cN. _ ,~*~ * -.- t -7

12.

I N..

NAIOA BU 3EA 22SADRD-16-

- -- IIIII1- 1.

"1%- %

,MICROCOPY RESOLUTION TEST CHART
.4= NATIONAL BUREAU OF STANDARDS-1963-A

4..

• . . , . . - . ,P,., . .o..,.• _,,.4,. , _.['-. ".,. .. '%", ' .:, .. ,-... "., ,. '.,.-. - ,-, - . ., '

4 0

RADCTR44&53, Vol I (of two)
* Final Technical Report

March 1964

SOFWARE TEST HANDBOOK

Boeing Aerospace Company
00

Edward Presson

APPROVED FOR PUBLIC RELEAE DIS TRIBUTION UNLIMITED D
r.-ECTE

'OCT 2 61984j

i3ROME AIR DEVELOPMENT CENTER
8 Air Force Systems Command

.3. Grlffiss Air Force Base, NY 13441

C=84 10 23 04p

. A . ~ 1.1 L . P J .

. . .- a -. -*- o o -°- .

• . - -a .

• . .r.-r

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, Including foreign nations.

RADC-TR-84-53, Vol I (of two) has been reviewed and is approved for 6
publication.

APPRVED FRANK S. LaMOKICA
Project Engineer >

APPROVED:

RAYMOND P. URTZ, JR.
* .Acting Technical Director

Command & Control Division

FOR THE COHMANDER.

JOHN A. RITZ
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COEE) Griffiss AFB NY 13441. This will assist -us in -

maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

00

-. . a

UNCLASSTFIED
SECURITY CLASSIFICATION OP THIS PAGE

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS pe

UNCLASSIFIED N/A
* 2aSECURITY CLASSIFICATION AUTHORITY 3. OISTRtSUTIONIAVAILAEILITY Of REPORT

N/A______________________ Approved for public release; distribution
21L OECL.ASSIPICATION/OOW01NGRAOING SCHEDULE unlimited

N/A.4. PERFORMING ORGANIZATION REPORT NUM04ER(S4) S. MONITORING ORGANIZATION REPORT NUM*E0tEI

N/A RADC-TR-S4-53, Vol I (of two)

G&. NAME OF PERFPORMING ORGANIZATION 66 OFFICE SYMEOL Is. NAME OF MONITORING ORGANIZATION

*Boeing Aerospace Company (if apial) Rm i eeomn etr(OE
Engineering Technology RoeArIvlpen etr(OE

Be. AODRESS (City. Stt and ZIP Code) ft. AOREISS (City. Stair and ZIP Code)

Seattle WA 98124 Griffiss AFB NY 13441 .

S. NAME OF FUNDING/SPONSORINGb OFFICIE SYMBOL. 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATIONof*~&

*Rome Air Development Center COEE F30602-82-C-0059

Sc. ADDRESS ICity. State ad ZIP Code) IM. SOURCE OF FUNDING NOS.

PROGRAM PRJC AK WORK UNIT
Griffiss AFB WY 13441 ELEMENT NO. No. NO. No.

63728F 2527 02 09
11. TITLE (Inude Security CiateMutioa)

.*.SOFTWARE TEST HANDBOOK
12. PERSONAL AUTHOR(S)%

Edward Presson /

13.. TYPER OF REPORT 131L TIME COVERED 14. DATE OF REPORT (Yr.. Mo1.. Day) 19. PAGE COUNT

FinalI PROM Mar 9 TO-spm March 1984 60
* 16. SUPPLEMENTARY NO0TATION

* N/A

11?. COSATI CODES Id. SUBJECT TERMS IConaua n rarm. if ntre# end identify by block Nmb er)

PIELD GROUP SUE. on. Testing
02 Software

Computer Programs
19. ABSTRACT iCORIAinu on firearm it sneog end iden 06 by Mock nlumber)

* The purpose of the Software Test Handbook effort was to provide Air Force software ~
developers with guidelines and methodology for the effective use of higher order language ~
(HOL) software testing techniques and in the selection of automated tools for the testing. -

of computer programs.0

The effort resulted in a two volume final technical report. This report, Volume I -

Final Technical Report, describes the total contractual effort including a project
overview, summary for each of three technical tasks, and a bibliography. Volume 11,
the Software Test Guidebook, contains the guidelines and methodology resulting from
the effort.,

'QP

D0 ISTRIUTIONAVAILAILITY OP ABTRACT 21. ASTRACT SECURITY CLASSIFICATION
20. SSPEOULIIE 12SM SaT 3o UES 3 UCASFE

22.. NAME OP RESPONSIBLE IN401VIOUAL 22. TELEPHONE NUME OFFICE SYMBOL

Frank S. Lafonica (35 3-97 AC(OS

DO FORM 1473, 83 APR EDITION OF I JAN 72 IS OBSOLETE. UNCLASSIFIED %.
SECURITY CLASSIFICATION OF THIS PAGE

%-
%~ % %

% q6
.............. -..-.-.--........

PREFACE -. S

This document is the final technical report, CDRL item A005, that describes the results

of the three tasks involved in developing the Software Test Guidebook. This report was -

prepared in accordance with the statement of work, contract F30602-82-C-0059. It

summarizes the activities performed for the Rome Air Development Center by Boeing

Aerospace Company in Kent, Washington.

In task I of this contract, a survey was made to determine current software testing

practices used in the five major Air Force missions. The survey was supplemented with

five site visits. Task 2 evaluated current state-of-the-art software testing techniques and

test tools and incorporated this information into tables. Task 3 designed and prepared the '

handbook.

This report is in two volumes: the technical report that describes the total contractual

effort and the Software Test Guidebook that describes the methodology for selecting "

testing techniques and test tools. The technical report comprises a project overview in 2

section 1.0; summaries of tasks 1, 2, and 3 in sections 2.0, 3.0, and 4.0; and a bibliography

in section 5.0. The Software Test Guidebook is divided into six sections. It is designed to

assist Air Force software developers in using higher order language software testing

techniques and in selecting automated tools to test computer programs.

/ .~~~~ ~.... -- -

5- *10..
Accession For -.

NTIS~$&

DTIC
ELETE

OCT 2 ** M4~ D 5,. s. r -1

A. v:%

i-.,- .,

D i OP-

TABLE OF CONTENTS

1.0 PROJECT OVERVIEW

1.1 Background I

1.2 Project Summary 2

1.3 Scope of Effort 2

' 1.4 Brief Description of the Guidebook 3

1.5 Outline of Investigation 6

1.5.1 Task 1, Programming Environment Survey 6

1.5.2 Task 2, Evaluation of Testing Techniques 7

1.5.3 Task 3, Preparation of Software Test Guidebook 8

2.0 SUMMARY OF TASK 1 9

2.1 Chronology of Activities 9

2.2 Survey Methodology II

2.3 Survey Findings 13

2.3.1 Observations 13

2.3.2 Air Force Site Summaries 16

3.0 SUMMARY OF TASK 2 19

3.1 Evaluation of Testing Techniques 19

3.2 Task 2 Considerations 20

3.3 Selection of Tool Taxonomy 23

3.4 Software Environments Characteristic of USAF Missions 26

4.0 SUMMARY OF TASK 3 28

4.1 Guidebook Development 28

4.2 Preparation of Text 28

4.3 Preparation of Graphic Materials 29

4.4 Editing and Review 29

5.0 BIBLIOGRAPHY 30

* -- ,.*. % %

* le
"-' '""" .)': "". ""-,,°-.e o - -"•"*-.'" "-"- a" ".. ".',- ',' -,'.L L' ' ',"' "',"% . " " . ,. ." "% -.% % - ,.•. -. "

LIST OF FIGURES

1 Guidebook Organization 4

:: 1 .. I-...

.W1V

dr~

5-.

.. .5-

5-..-.

% ,, %

"v

• '',r 'e. ',' , , ,?,. , . .. ' ' .-.. , ,,,,+.,.'.', ,,.-,, , .,.,...., ' ..-. ,-,...-.-. -... ._....... ..--.-. ... ,.. ,-.,-..-, .. , -.
S. ,,rv'".." - , ,j + ' '.,.",'".'""",'"",, ,"- ' ' ."-".'•-'", . ''Z .

'
."o'. ,? " ,'.+.''-";,,'; , ,' , .'..v . , ',- -.-. " . - -,-. ..-. -, - ,- . . . +. -.- ' ". .. ,- • • "., -. .,-- f

ABBREVIATIONS

AD Armament Division

ADC Aerospace Defense Center

ADP automatic data processing

AFTI advanced fighter technology integration j
ALCM air-launched cruise missile

ASD Aeronautical Systems Division

ATE automatic test equipment

ATO Air Tasking Order

BITS built-in test

CAFMS Computer Assisted Air Force Management System

CCPDS Command Center Processing and Display System

CINCSAC Commander-in-Chief Strategic Air Command

CITS central integrated test systems

COM computer output microfiche

CPCI computer program configuration item

CPU central processor unit

C3 command, control, and communications

CSOC Consolidated Space Operations Center

-. DGZ designated ground zeroL DT&E development, test and evaluation

. ELINT electronic intelligence

HDM hierarchical design methodology

"' HOL higher order language

ICBM intercontinental ballistic missile

IDHS intelligence data handling system

r,. IUS inertial upper stage

IV&V independent verification and validation

iv

p. -- 0. r%.r 1

1 . . 4.C.~~~~ W f. b '

-- 1

---"-"
i''.

JINTACCS Joint Interoperable Tactical Air Command and Control System

JSCS Joint Strategic Connectivity Staff

JSTPS Joint Strategic Target Planning Staff

LRU line replaceable unit

MATE Modular Automatic Test Equipment (program)

NMCC National Military Command Center

O&S operations and support

OFP operational flight programs

OPR Office of Primary Responsibility
0%.

OT&E operational test and evaluation

PROM programmable read-only memory
"--.".'

SAC Strategic Air Command
SCF Satellite Control Facility

SD Space Division

SDL software development laboratory

a" SILTF System Integration Laboratory and Test Facility

SlOP Single Integrated Operational Plan

SLBM submarine-launched ballistic missile

SOLARS SAC On-Line Analysis and Retrieval System

SPO System Program Office

SREM/REVS Software Requirements Engineering Methodology/Requirement Engineering

Validation System

SRU shop replaceable unit

TAC Tactical Air CommandTACC Tactical Air Control Center

TACS Tactical Air Control System

TRD Test Requirements Document

TRICOMS Triad Computer System 0

v7 .Aj

'r. % P Or.,% ? % ' '%.% *
h..--.L,_ ..N--.' _..' ¢ ¢J ".e '.-.• -2 -"-. .-''..- '''-.-.'''.- J .- ' ..•OF NO". .""l"".-'. "' .'..'IL-"-PZ ,L4,, .",, % O ,,r .%_. ,"46_"- %. - 06 ' .-.-. ,."- . ,'. " '. .- . .,.. ,.. -- - . - . _ ,_.s ' " .-, -' .

"

-77

TTY teletypewriter

-USAF United States Air Force

UUT unit under test

V&V verification and validation .

WWMCCS Worldwide Military Command and Control System

V..

vi%

.- %.- * * " *

Z:_:1 i_;- _7 7.i7-737

:.- -. 1.0 PROJECT OVERVIEW

1.1 BACKGROUND

The testing and operational support of computer programs continue to be critical

information processing problems facing the Air Force. Substantial resources in terms of

funds and personnel are continually applied during the software development life cycle for

testing and maintaining computer programs. However, in many instances the application

of these resources does not achieve the desired result; that is, programs thought to be

correct may suddenly produce erroneous outputs during operational use.

Traditionally, testing, verification, and validation of software have been a largely manual -

process. For example, test drivers and data are usually prepared manually and the test

results manually interpreted. A wide variety of additional software testing and.verification tcnqehabeen deeoe n rcnyears, many of whc ca ndhv
been implemented in automated software tools. While the effectiveness of manually

-. applied techniques can vary considerably with the skill with which they are applied, many
software tools can be highly consistent and reliable in their ability to detect the errors for

which they were designed. These software tools can potentially improve the quality of

testing and at the same time reduce the manual effort required to test a software system.
.,

Typical testing activities that occur in the software development life cycle include unit

testing, component testing, integration testing, system-level and acceptance testing, and

maintenance testing (retesting). These activities, which may differ slightly from one
development environment to another, are each associated with different objectives and

impose specialized requirements on the testing task. As a result, certain testing

techniques may be more applicable to one activity than to another.

[. -'. 'I. _

In many cases, while the techniques implemented by the tools have proved effective, the '1
use of these tools in military software development and support environments has been

lacking. In part, the low utilization is because managers and engineers are not well

informed about the availability of tools and techniques, their usefulness and effectiveness,

and how they can be integrated properly into specific development and support environ-

ments. While a number of regulations and guidebooks for software development have been

4.i

prepared in the past, most have dealt with providing an understanding of the software

development life cycle, and little emphasis has been placed on using software testing tools

and techniques in the life cycle.

1.2 PROJECT SUMMARY

The purpose of the Software Test Guidebook project is to provide Air Force software

developers with a guidebook to guide them in the effective use of higher order language

(HOL) software testing techniques and in the selection of automated tools for the testing

of computer programs. The guidebook specifies guidelines and methodologies for under-

standing and applying automated state-of-the-art testing techniques in various types of

Air Force software development and support environments. This effort will foster the

transfer of advanced software testing technology to the Air Force user community. Air

.orce software developers may find the results of this effort useful in supplementing

-- existing regulations and guidebooks.

1.3 SCOPE OF EFFORT

Guidelines and methodologies were developed that describe the proper use of advanced

software testing technology during the development of computer application software for

the five primary Air Force missions (armament, avionics, command, control, and
3communications (), missile/space, and mission/force management). The guidelines and

methodologies pertain to those testing activities of the software development life cycle

that follow the beginning of actual program coding. Representative Air Force software
sites were visited and analyzed to determine typical characteristics of application

software and environments in which application software is developed and maintained.

Characteristics of advanced state-of-the-art software testing technology were extracted

from the literature and from available software tool surveys. The guidelines and

methodologies developed have been provided in the form of a guidebook.

Guidelines and methodologies were developed for the selection of state-of-the-art

software testing techniques in the computer program development life cycle; that is,

development test and evaluation (DT&E), operational test and evaluation (OT&E), and

verification and validation (V&V), as defined in AFR 80-14 and AFR 800-14, with the

following constraints:

2.

a. This effort covered only the coding and checkout phase, test and integration phase,

and operation and support (O&S) phase. Further, for the O&S phase, the investiga-
tion was limited to the support aspects (i.e., coding, checkout, and retesting of I
modifications to deployed computer programs).

b. This effort considered not only those testing techniques pertinent to the develop-
ment of operational computer programs for the five primary Air Force missions, but
also the use of those testing techniques in the development of auxiliary software

programs (e.g., simulators and data analysis programs) used to test and support the

operational computer programs.

I

1.4 Brief Description of the Guidebook

The principal purpose of the guidebook is to select state-of-the-art testing techniques for
organic Air Force software testing. In addition, the guidebook can be used for preparation E

of a Statement of Work and for evaluation of proposals. All three applications use the -,-.

same table-driven methodology to determine appropriate software testing techniques.

The guidebook is designed to permit a user to determine appropriate software test

techniques, starting with the knowledge of which USAF mission is being supported. Using
the unique guidebook appendix to his mission, the user can identify the specific software

types to be tested. With this knowledge, the user will be led to the generic software type

corresponding to the software function at hand. With the generic software type (from the -
guidebook appendix) and testing confidence level, the user can go to another table to find

the appropriate software testing techniques for his unique situation.

The table-driven methodology provides three paths for technique selection. The first path

is based on the kind of software being tested and the testing confidence level required.
The second path is based on the test phases and test objectives, and the third path is based
on detection of specific software error types.

The contract was titled "Software Test Handbook," but "Handbook" was changed to

"Guidebook" to better reflect the purpose, which was to assist in the selection of testing -

techniques, not to rigidly define them. .

3.4

%%4.

3. ?.".

,- .- - •.. . .. -.-.- ,
,,.. .- ,., ,,. ",,, ,, ~ ~ ~~.. - . .- , , . , . . , , . , :• , , , . ,-.'. ...-. -...........-...-. , . . - ,._." '...'.'." , -:,.,..,,-.,., 4.-.., . .$,. . .'

.0.

AAPPENDIXA

ACQUVSITION

APPENDIX

ARMAMENT

SECTION

SAMPLE

STATEMENTO

WORK

PARAGRAPH

Figure N S.GieokOgnzto

SOFTWAR
ACUIITO

LIFECYCL

-. ~ ~ SETO 4 .% ~4. ,***

The Software Test Guidebook comprises six major sections and five appendices, as shown

in figure 1. A brief summary of its contents is found in the following paragraphs.

Section 1.0 states the objectives of the guidebook, describes its outline and content, and

discusses its applications.

Section 2.0 presents a compact set of instructions, guidelines, and tables for selecting

software testing techniques. It also includes sections on the selection of software support

tools and on test completion criteria.

Section 3.0 contains a list of the major catalogs that provide information on automated

software tools. It has tables that provide a cross reference to three tool catalogs for

determining the availability of existing software tools that support the techniques

selected by the guidebook user.

Section 4.0 defines the terms used in the taxonomy of testing techniques and gives a

detailed description of state-of-the-art testing techniques. These descriptions discuss the

technique and related considerations such as cost, user training, and hardware require-

ments.

Section 5.0 discusses the software life cycle, software acquisition cycle, and the normal

phases of testing, as defined in AFR 80-14 and 800-14. This section is a supplement to

the guidebook and does not replace the Air Force regulations.

Section 6.0 has several model statement of work (SOW) paragraphs that may be used as

prototypes by Air Force acquisition managers in preparing a request for proposal (RFP). .N,

The appendices describe five Air Force mission areas: armament; avionics; command,

control, and communication (C3); missile/space; and mission/force management. Each 1

appendix lists software functions characteristic of the computer programs developed

within that mission. These functions are each assigned a software category number.

5.

- ~~~~~~~...-.. -...........-...:....-,-.-..........- .. '-.-----.-,.- -. .. : .,._
0 , ** .,. -..'--~-... "..'.. " .. .'.- ... '.,'..'. '-' -...-"-, . ' p.,",." -

.' .' . .A *'

-ph I. ~

"16 77- 71 -7 7

-'ft

1.5 OUTLINE OF INVESTIGATION

The Software Test Guidebook development comprised three major tasks, which are

outlined in sections 1.5.1 through 1.5.3.

1.5.1 Task I, Programming Environment Survey

An investigation to analyze programming characteristics and the development and support

environments of typical application software for the five primary Air Force missions was

conducted in task 1.

Within each primary mission, differences in the application software that impact the most

appropriate testing and verification strategy were investigated. The following charac-

teristics were addressed:

Operating instructions and regulations used to standardize programming and testing

methods and to document the testing process.

Level of robustness (fault tolerance).
a* - Timing and synchronization requirements; real-time processing constraints.

- Distributed and centralized processing configurations.

Application program processing requirements.

Type and level of HOL programming languages used.
Level of support and testing provided by compilers.

Software testing tools and techniques and debugging aids typically used.

Code complexity (data structures, control structures, data types).

Real and non-real-time applications.

Where coding and testing are performed (type of machine).

Availability and abundance of memory, central processor unit (CPU), and disk

storage.

* Availability of input-output (1/0) to an external storage media.
Computer host and target relationship.

Use and non-use of environment simulators on host computer.

* Batch and interactive mode of use.
Size and number of modules in a typical application and sizing criticality.

Evolutionary requirements of a typical software application.

-ft 6.
6'

% -% %q

r..- • :-...'. - •a ? : ,: ,,W4 5' ., ,: , . .. , ' ? ' " :. *U • - -q#"-*'.'-'"."- \ :-:'•'- '," - •'• '. :."•'

* Type and criticality of software application (or its components).

* Mission-imposed time constraints for software modification.

* Testing requirements included in statements-of-work for contracted software

development.

To collect characteristic data representative of the applications as specified in the

preceding list, the following Air Force software development sites were visited.

Tactical Air Command Headquarters, TAC/ADY, Langley AFB, Virginia.

Aeronautical Systems Division, ASD/EN, Wright-Patterson AFB, Ohio.
Space Command, SPACECOM/KRS, Peterson AFB, Colorado.

Space Division, SD/AGM, Los Angeles AFS, California.

Strategic Air Command Headquarters, SAC/AD, Offutt AFB, Nebraska.

Armament Division, AD/SDEE, Eglin AFB, Florida.

A questionnaire was prepared and distributed to each of the designated sites prior to the

scheduled visit. It addressed collecting current data pertinent to the previously listed

application software and development environment characteristics. Results of this task

were reported in the task I Interim Technical Report, CDRL item A003, dated February

1983, and are summarized in section 2.0. These results were also used to prepare

appendices A through E of the Software Test Guidebook to describe the five primary Air

Force mission areas. The P/M Group (1546 Marsetta Drive, Dayton, Ohio 45432) was

responsible for the survey pf AD and ASD.

1.5.2 Task 2, Evaluation of Testing Techniques

State-of-the-art HOL software testing techniques most appropriate to the individual

testing and verification phases of each type of Air Force application software and its

associated development and support environment were determined. A correlation of test

requirements with those techniques most suited for verifying them was provided.

Lxamples of such requirements include module interface checking, timing and synchroni-

zation, and fault tolerance.

7.2'G

To determine the applicability of testing techniques to particular Air Force environments,

the following characteristics were considered:

a. Performance analysis capability.

b. Error detection and location capability.

c. Side effects and benefits (e.g., computer program documentation).

d. Cost, schedule, and benefits impact.

e. Management impact.

f. Training required (user and maintenance training).

g. Usage constraints (machine, language, and operating system).

h. Typical computer resources required (e.g., memory and CPU time).

i. Level of human interaction required.

j. Usefulness of technique in supporting modern programming practices such as

structured programming and structured walkthroughs. .

Software tool taxonomies and surveys were used to define and identify software testing

tools and techniques, and their typical performance characteristics. Results of this task

are reported in section 3.0.

1.5.3 Task 3, Preparation of Software Test Guidebook

Guidelines and methodologies for using the applicable techniques during DT&E, OT&E, and

V&V for each Air Force mission area were developed and compiled into a guidebook. The

organization of the guidebook was designed around the table-driven methodology. The

design goal was to produce a guidebook that would be easy to use for both the first-time

reader as well as the experienced guidebook user. To achieve this goal, the guidebook was

organized so that its use would appear intuitively right to the new reader, but arranged so

the experienced user could accomplish his task efficiently. The guidebook organization

and usage was illustrated with a series of figures to further clarify the structure. The .

text was written by software engineers and reviewed by a technical editor; this process

went through several iterations. Additionally, the contract technical monitor provided

many comments on early drafts as the guidebook evolved.

P. ""

• , ... , m e : e. - , -.. , , -.-e & . , , -, ,, , . . , - ..., - ... ,. .. , ., ' ' , . - .- .., . .. , .-. , ". -. - % ,.%- . . .+ .- .

.- :,,

2.0 SUMMARY OF TASK I
:4.

°.J o

2.1 CHRONOLOGY OF ACTIVITIES
.- -.

The following list of activities were completed in task 1. %S.

a. The Software Test Handbook contract was awarded on March 3, 1982.
"'S.

b. A kickoff meeting was held at RADC in Rome, New York, on March 25, 1982, where

plans for the task I activities were discussed and a detailed proposal was presented
for the questionnaire outline, scope, and coverage.

c. Air Force site representatives were contacted by telephone to familiarize them with

the survey process; this activity took place during the week of April 17, 1982.

d. A pilot survey was conducted in May 1982, using the ASAT Missile Guidance

Computer Program. This pilot survey was followed by interviews of the individuals

who completed questionnaire forms in order to determine the time required to

complete questionnaire sections and identify any deficiencies. Comments received

from the pilot survey were incorporated into a revision to the questionnaire.

e. The draft questionnaire form was distributed to eight Air Force site representatives

for their review and evaluation on May 14, 1982. Completion of this review required

I month.

f. The questionnaires were completed by the following Air Force sites and returned by

September 1982.

1. Armament Division, AD/ENEC, Eglin AFB, Florida.

2. Aerospace Defense Center, ADC/KRS, Peterson AFB, Colorado.

3. Aeronautical Systems Division, ASD/EN, Wright-Patterson AFB, Ohio.

4. Space Division, SD/AGM, Los Angeles AFS, California.

5. Tactical Air Command, TAC/ADY, Langley AFB, Virginia.

9.

.. '. 9.% .. '

%.. - .,,...L

g. Air Force onsite survey visits were conducted by Boeing and P/M Group personnel at

six sites on the following dates:

I. Space Division (SD), Los Angeles. September 15 through 19, 1982, (P/M

Group).

2. Aeronautical Systems Division (ASD), Wright-Patterson AFB. September 20

through 23, 1982, (P/M Group).

3. Aerospace Defense Center (ADC), Peterson AFB. September 20 through 21,

1982, (Boeing).

4. Tactical Air Command (TAC), Langley AFB. September 23 through 24, 1982,

(Boeing).
i%

5. Strategic Air Command (SAC), Offutt AFB. October 4 through 5, 1982,

(Boeing).

6. Armament Division (AD), Eglin AFB. October 7 through 8, 1982, (Boeing).

h. At the four sites surveyed by Boeing, briefings were presented to Air Force

personnel from all participating organizations. The presentations covered the

purpose of the guidebook, the approach for using the guidebook, examples of some of

its tables, and a taxonomy for software test techniques and tools developed for the

guidebook.

i. Air Force site summaries were prepared during November 1982. These summaries

* were derived from a composite of the data obtained from the questionnaire

responses and onsite visits.

j. An oral presentation covering a summary of task I activities took place at RADC on

February 1, 1983. Representatives of all participating Air Force organizations were

invited by RADC to attend this review.
i-, '

I..

10.

% -. -% '" " " " " "-"_ '- . .

- , , , . .. r . "-. . . .*,.-"• .' *,, .- , - . ." ..S, ,. . .-. ,,, -

rV 2.2 SURVEY METHODOLOGY

The scope of the survey was well defined by the statement of work for the contract. The

tasks to implement the survey required defining a general strategy for effectively

obtaining the required information from participating sites. An underlying assumption

was that the principal problems would be (1) limited availability of personnel to provide

survey data and (2) determination of how to select the target software for survey

coverage, so that the results would provide representative data; survey forms for
recording data must be compatible with the level of the software. It would have been

C desirable to select classes of software for conducting the survey for each site. However,
this was not practical because (1) the classes at the various sites were not known and (2)

. classification of software for site and mission areas was considered a necessary product

derived from the survey, rather than an input to it. .'

- It was concluded that the survey questionnaires should be directed toward individual

computer program configuration items (CPCI). Each site representative was requested to

select between four and eight computer programs, typical of their software, for the

survey. This number was a compromise between a desire for a more statistically valid

sampling and the significant amount of time needed to complete the questionnaires. The

pilot survey participants reported that it took them approximately 3.5 hours to fill out one

questionnaire.

Another consideration in formulating the questionnaire was whether the basic information

should be obtained in person-to-person interviews or by a mailed-in form, followed up by

a more generalized interview covering the total site software development and mainte-

nance environment. It was concluded that the latter alternative would be a more
efficient use ol contract funds, permit greater flexibility in the nature of the onsite0
interviews, and help minimize bias.

Once the basic approach for the survey was defined-a stand alone questionnaire, followed

by an unencumbered site visit-it was necessary to establish the format of the question-

naire to provide the needed information. Two general approaches were considered: one

emphasized essay questions, the other emphasized multiple-choice questions. It was
concluded that essay questions would be most desirable for person-to-person interviews,

while multiple choice would be best for the mail-in-form approach. Therefore,

% %9 *.v~s2..%.%:.:b6

multiple-choice questions were selected for the questionnaire, despite the fact that they

would be more difficult to prepare. Essay questions were considered too unstructured for

the survey.

The questionnaire form was divided into six independent sections. The rationale for this

was twofold: (1) to encourage qualified personnel to provide information in areas of their

expertise and (2) to provide the capability to distribute the effort among several

participants, rather than encumbering a single person. One large questionnaire was

considered more likely to be deferred in the work scheduling than a sectionalized one.

Many of the questionnaires were completed by more than one person, but rarely by more

than three. The six sections of the questionnaire were as follows:

a. Part 1, General Software Information. Acquires information concerning the size and

the technical and contractual requirements for a computer program. This part was

% ' intended to be completed by individuals such as program managers or administrative

officers with project-level visibility.

b. Part 2, Development and Maintenance Environment. Acquires information about

processing capabilities and development aids and tools used to develop, support, and

maintain a computer program. This was intended to be completed by individuals

such as project software managers with detailed knowledge of the software

development and maintenance environment.

%:

c. Part 3, Software Characteristics. Acquires information about the technical

. characteristics of a computer program, including design, code and data charac-

teristics, and complexity. This part was intended to be completed by individuals

such as lead programmers with detailed knowledge of the computer program.

d. Part 4, Software Tools. Acquires information about automated tools used for error

detection and analysis and testing, including compiler-based tools and static and

dynamic analyzers. This part was intended to be completed by individuals such as

" lead programmers or lead test engineers with general knowledge of the use of

software tools. Ratings of tools used were intended to be done by tool users.

e. Part 5, Software Test Methods. Acquires information about testing activities for a

computer program, including rationale for test cases and test completion criteria.

12.

.

This part was intended to be completed by individuals such as software test

engineers with indepth knowledge of software test activities and error reports.

f. Part 6, Software Error Categories. Acquires information about types of errors

detected during initial development or maintenance. This part was intended to be

completed by individuals such as software engineers, test engineers, configuration

management personnel, or quality assurance personnel who are responsible for

recording or maintaining software error data.

2.3 SURVEY FINDINGS

This section represents summaries of the characteristics and nature of software develop-

ment, maintenance, and testing practices of each of the sites. The findings are derived ..

from a composite of data collected from the questionnaire forms and by onsite interviews.

Generally, the interviews were conducted with persons other than those who had -

completed the questionaires. Therefore, a different and broader perspective was obtained "

during the onsite interviews. 1.'

Since SAC did not choose to participate in the questionnaire phase of the survey but did

participate in the onsite interviews, the level and character of data collected for this site

differs from the other sites, although information was provided by participants during the

visit to this site. This is particularly evident in the testing area, where sufficiently

detailed data were lacking to make assessments about the general characteristics of the

software testing environment at SAC. It should be noted that this is a more difficult site

in which to characterize the testing environment because of the multimission nature of

SAC responsibilities and the wide diversity of unrelated computing systems supported at

this site.

2.3.1 Observations

-4

The Air Force site summaries included in section 2.3.3 of this report provide objective

data about those sites, to the extent that the survey participants were objective. In

contrast to this information, certain subjective assessments about the nature of software

environments at these sites were derived from the surveys. These assessments are

included for the interest they may provide and are not necessarily substantiated by data.

13.

-'%74
°' '" -'; .• . -=- .. •*.** . -*.-*..*,'.-.• •, _ * . • ,%d.--• '. -.-. .. -,..° ,- .,, _.%,,,' %, , 'j -

' W.: ** -

'I

a. The amount of the total project effort devoted to software development and

maintenance requirements, implementation, testing, and installation was striking.

Even in the hardware-oriented development programs, software development con-

sumed a large share of the total effort. The impact of software processes on these

S systems is considerable and should not be underestimated....

b. There appeared to be relative uniformity among the Air Force sites in the

application of software development methodologies. The sites surveyed generally .

*5 employed system- and CPCI-level specifications, prepared them using MIL-STD-483

and -490, and used them for developing test requirements for system-level software

testing. Also, software unit testing against design specifications was typically

prepared according to MIL-STD-483 and -490. The sites made general use of design 6

reviews (PDR and CDR) and adhered to Air Force regulations AFR 300-series and/or .,..

AFR 800-14. Recent technology for software development was used at the sites,

* including hierarchical design, program modularity, and incremental development

techniques such as top-down or bottom-up integration. However, none of the sites

uere observed to be using the more recent, so-called advance techniques, such as

formal specifications (naJo, HDM), automated requirement languages

(SREM/REVS), data- structured design techniques (Warnier, Orr, and Jackson), or

formal testing techniques (symbolic execution). Of course, these omissions may be

" intentional, since these techniques do not lend themselves to application in these

environments. Also, many of the surveyed computing systems have been in place for ..'

a number of years, preempting the application of such technology.

c. Both assembly language and compiler (HOL) debug aids are universally available; the

compiler aids are widely applied and generally considered easy to use and effective.

On the other hand, assembler debug aids seem to be somewhat avoided except where
4 essential, probably due to their being more difficult to use.

d. Software testing aids are not widely available at the Air Force sites. The tools

generally in use are directed at project test management and scheduling and at file

and configuration management for testing purposes. Some specially developed tools

were reported that aid in data manipulation and test data analysis, but they too

were infrequent. The most frequently used tools that directly support testing

h.. activities are environmental and system simulators. They also are used to support * A

%

14.
%

•. 5. ,.• ,-,-.v .. A. A......... . .

development activities.

e. The prevalent methods of testing are debug (compile and remove coding errors),

functional testing to specification requirements, and system operation, "soak."

Methodical approaches toward establishing test goals and objectives for particular

circumstances and shaping the test cases to those goals and objectives were not

evidenced by the survey. There probably are no uniform practices for defining test

cases among the Air Force sites.

f. There was a uniformly high level of concern among the Air Force sites about the

adequacy of their software testing programs. All the sites directed considerable

attention to testing; and the testing prograns conducted either by the Government
or by contractors are structured, progressive, and subject to management visibility.

In all cases, final approval of testing is required before the software is permitted to

become operational.

g. Documentation uniformly prepared for software testing programs consists of test

plans, test procedures, and test reports. V&V plans are not used at all sites.

h. Independent V&V is not a common practice among the sites surveyed; it appears to

be applied to large, complex contractor development programs. No instances of its

use were noted where the software is developed or maintained by the Air Force sites

surveyed.

i. Structuring of test programs at the Air Force sites shows a common symmetry.

Testing consisted of specific, well-defined series of phases: debug and unit/module

testing, often defined as computer program test and evaluation (CPT&E); integra-

tion and CPCI verification, often identified as DT&E; system testing and operational

verification, often referred to as OT&E.

j. Analytical, metrical, statement, or logic coverage methods for determining the

completion of testing are seldom used at the Air Force sites surveyed. The three

most commonly used completion criteria are specification coverage, satisfaction of

test requirements, and schedule completion.

15.

'.'.VX'4

* .% %.

. ..- -* .. .* , .

-7'

2.3.2 Air Force Site Summaries

This section of the report provides summaries of the Air Force sites surveyed.

Armament Division. This site is a developing agency for tactical weapon systems,

particularly threat, missile, and scoring systems. All embedded software systems

development at the Armament Division (AD) is performed by contractors. The contrac-

tors are usually small, specialized, high-technology companies, but larger aerospace

companies also contribute to the systems development. The software contained in these

systems typically tends not to be critical, even though the systems themselves may be

critical. The contractors design, develop, and test the software according to contractor-

defined standards, but under the general contractual-level supervision of Air Force -

personnel. Testing practices vary rather widely among the many contractors supporting

the AD.

Aerospace Defense Center. The Aerospace Defense Center (ADC) is both a developing -

and user agency for a single mission area: strategic warning and support systems.

However, its systems are currently in place and undergoing maintenance activities, which j
consist of performance enhancements and additional system capabilities. Development is

accomplished extensively by contractor personnel, depending on the organization and

system function. Maintenance is either conducted by the Air Force or by contractors

under close Air Force supervision. The system components are highly interrelated and the

functions they perform tend to be highly critical. Systems are typically redundant, with

multilevel fallback considerations. The computational systems perform numerous real-

time communication processing functions, including message switching and routing

control, complex trajectory calculations, systems status monitoring, and man-machine

interface for control purposes. Testing practices are relatively uniform among the

functional software activities and are highly adapted to the system characteristics. The

space activity employs an independent test approach to interface and system-level testing

after the programmer has completed module testing. Detailed test procedures are

developed and updated prior to system testing. The requirement for successful software

testing at both the module and system level is deeply embedded within the version release

cycles. Operational testing to mission specifications is accomplished by the user

subsequent to turnover from the software organization.

%

16.
%' I

_ _- %. .

OA VD

.~ 4a~ 1'.'A. ~a/.dl % A . % ~9. ~

Aeronautical Systems Division. Aeronautical Systems Division (ASD) is a developing

agency for weapon systems equipment, including avionics, automatic test equipment, crew
training devices, flight control and reconnaissance, and C 3 systems. System and software •-':

development are typically contracted. The development contractors tend to be medium- .

to large-size aerospace corporations, with substantial technical expertise in weapon

systems development. The systems and embedded software are developed under well-
defined contractual requirements and monitored by onsite representatives with frequent

reviews of activities and documentation by ASD personnel. A wide diversity of software

is developed by ASD, including numerous aircraft avionics and control systems, and

communications systems software. Development activities are controlled by Government

standards, and testing practices are fairly uniform, adhering to Air Force regulations and

uniformly defined testing requirements imposed by SOW. %6 .

Strategic Air Command. The Strategic Air Command (SAC) has a diversity of missions to

support (e.g., C3 , war planning, intelligence support, and strategic weapons support) and

develops a wide diversity of unrelated systems for these missions. For strategic

weaponry, SAC is a user agency, while for the other areas it is both a developer and user.

War planning and intelligence systems are developed and maintained almost exclusively by

Air Force personnel, while the development of information and management systems

often is conducted primarily by contractors and the maintenance shared by Air Force and

contractor personnel. The software developed for the warning functions ranges from

highly critical to noncritical. Software development practices for contractors are %

controlled by the SOW, and internal maintenance is conducted in accordance with SAC A

regulations. The computation systems used by SAC tend to be data-base and data-

processing intensive, such as in the intelligence and war planning areas. The warning area
3

includes real-time control functions, and the command centers use C technology

software. SAC-conducted software testing practices and methods are standardized by

SAC regulations. However, there exists variability in their application, corresponding to

the differences in the software categories, criticality, and functional organizational

practices. ..

Space Division. The Space Division (SD) is a development agency for space-related

systems, including satellites, launch vehicles, and ground control and communications

systems. SD relies extensively on contractors to develop its systems and the embedded

software. These contractors also perform maintenance under follow-on contracts.

-. 6.
•,-r.

-. , " .-. N

A .A'. V--,

Software development requirements are defined in detail in the SOW; SD personnel, often

- coupled with technical consultant contractors, intensively monitor all development

activities at all levels. Frequent reviews and technical direction are provided by this

agency. A wide diversity of software categories is developed by SD, including software

for communications, satellite control systems, prelaunch checkout and ground test

systems, space vehicle avionics and control, and system simulations. This site employs

independent verification and validation (IV&V) contractors to a greater extent than any of

the other sites surveyed. Software testing practices are established by Air Force

regulation and defined by the SOW. As a result, these practices tend to be relatively

uniform among the development contractors. SD places great emphasis on the thorough-

ness, sufficiency, and formality of contractor testing practices.

Tactical Air Command. The Tactical Air Command (TAC) is the development and user

agency for the major Air Force tactical planning system, the Computer-Assisted Air

* Force Management System (CAFMS). The CAFMS is a single-function, highly interrelated

automated processing system. The major output product of CAFMS is the air tasking

order report. CAFMS was developed by TAC personnel with some contractor assistance

during the early requirement and design phases. Management, development, and mainten-

ance of this system are well defined and uniquely adapted for its ongoing support. The

u. ..., system is currently operational, but undergoes continual enhancements and incorporation

of new capabilities. The overall function of the CAFMS is quite critical, but few of its

software components are considered to be more than moderately critical. The system

does incorporate some automated fallback provisions in case of failure, but redundancy of

system functions is not provided, and reversion to manual operation is the ultimate

fallback provision. Testing practices are well defined and are incorporated as an integral

part of a version release management system developed by TAC specifically for CAFMS.

-- Testing is applied uniformly to all software components undergoing development.

%S

%"

~ .

4° .. .
4.4.- "

ig:-'"

*%-% '. .

.- .-

• j' .- /' ,, ,',," , ., ". . ' a" • . * • ° r . ° -4 . . i .

p . ,. . . .,. / .. .- -.. . - ., ;.b. ,. .; - '.. . - --. . -, - . ' . -' ' ' .- . -. -.p . . .

3.0 SUMMARY OF TASK 2

3.1 EVALUATION OF TESTING TECHNIQUES

The relationship between mission application test requirements and state-of-the-art .
software test techniques was developed in this task. A step-by-step approach was applied -,

in developing the tables used in the guidebook. This process began with developing the

taxonomies to be used in developing the guidebook. First, the software error categoriza-

tion was selected; second, the method was selected for organizing the types of software in .

" the five USAF missions areas.

The first table constructed was the testing confidence level table. This table allows the ..

guidebook user to establish a confidence level of software testing appropriate to the

criticality of the software, the type of software, the budget and schedule constraints, etc.
The testing confidence level number is then used in subsequent tables in the guidebook to

extract appropriate testing tools and techniques for a specific situation. .

The next table constructed rated the effectiveness of software test techniques for

detecting specific software error types. This table is one of the few that does not use the

testing confidence level. It uses an independent rating system that considers only the '
' relative effectiveness of the specific tool or techniques being considered against specific

*: software error types. This was followed by the construction of a table that related the

tools and techniques to specific software types in terms of the testing confidence level.
The software categories were derived from a survey of Air Force software testing -

practice. The relative criticality of the software, and its difficulty from a software

engineering viewpoint were used to define the 18 categories used in the guidebook. These

categories are listed in section 3.4 of this final report, and defined in table 2.2-2 of the
guidebook.

A table that was to relate specific software error types to Air Force missions did not ._
prove to be feasible. The task I survey of Air Force sites revealed that there was not
enough data on software errors to construct the table. An attempt to provide a generic

table was dropped when it became evident that such a table was too general; it contained'I

no new or useful information. "

19.

A 2.. .. .-.. . . ,-:.-..:, ., -.. , . ; > ..-.. ,, :.. %, .,, ,.. ,. ,. %, ...

-. h~ J- * . *.. . , .* ., . " . . . , . ,. ..

. 4.

A table that was to relate test phases to test techniques was reconsidered for its

effectiveness. In some cases, the guidebook user may know his testing objectives, but in

other cases the user may only know the relevant test phase. Therefore, this table was

redesigned to relate test objectives (a more basic concern) to relevant test techniques. A

new table was designed to relate test phases to test objectives. This change results in a

. more accessible and usable methodology for guidebook users, with varying kinds and levels

of knowledge of their software environment and testing problems. A basic premise of this

table, resulting from both state-of-the-art theory and discussions with Air Force test V

personnel, was that testing techniques used in early test phases remain applicable in later

phases. For example, a code auditor, used in unit and module testing, should be used in

later phases to assure that modifications and corrections resulting from later test phases

do not violate coding conventions.

As a result of the discussion of the draft technical report on task 2 at an oral technical II
review, the last two tables were combined into one large table. The attendees agreed

that the new combined table included in the guidebook was a more efficient and usable

design than the two-table concept.

A table that relates software test techniques to support tools was constructed in a similar

manner to the other tables. The major difference is that the table does not use the

testing confidence level values as entries in the matrix. Instead, the support tools are

merely indicated as being appropriate or inappropriate for the various test tools.

3.2 TASK 2 CONSIDERATIONS

Many considerations were involved in developing the contents of the tables. The ratings

given in each entry reflect testing confidence level in terms of the complexity of the

software, criticality of the software to the mission, and relevance of each software test

tool or test technique to the particular software type.

The software categories were also chosen carefully so that the mission software types

could be mapped into the software categories used in the guidebook. Within a category,

software is chosen for similarity of function, internal structure, and complexity.

20.

,"""

•• .-. - "• o•• -' , •• . . - . .. •.- •• . -.- "--- '.,. '. ', ,- ,- ', ,".".',' -""• 'A •A"-..=.A-.''..

II,

Two approaches were used to accomplish the complex task of evaluating the various
D" %*

•
/*

testing techniques. First, a comprehensive literature search provided (1) a source of

information on the various types of test techniques available and (2) a first cut at rating

their effectiveness. Details on classes of testing techniques were gathered from articles
on individual techniques, and relative ratings of technique effectiveness and limitations,-'-

were gathered from survey articles. Second, a group of Boeing software engineers who

had extensive experience in tools and testing were surveyed. This survey asked for the

techniques to be rated according to each of the 10 considerations described in the

following paragraphs.

a. Performance analysis capability. Determined by literature search, personal experi-

ence, and discussions with other software engineers.

b. Error detection and location capability. We rated each method, efficiency, relative

success at detection of specific error types, and the precision with which the

techniques locate (i.e., precisely identify the exact error) the software errors so

that they can be understood, analyzed, and corrected efficiently.

c. Side effects and benefits. Other worthwhile results of the technique were also

considered. For example, some techniques may provide output that can be used in

the product documentation of the software being tested.
,..°.

d. Cost and schedule benefits and impact. Specific techniques differ widely in their

relative costs, the time involved in their use (schedule impact), and their relative
benefit..,--

e. Management impact. All techniques were rated as to their benefit to management. 0
Some approaches provide valuable visibility on the progress and health of the

software development project. If a technique provided additional visibility to

management, it was rated more valuable and productive (given a confidence level

rating that would make its use more likely). It should be noted that some techniques

such as a peer code review specifically exclude management visibility to achieve

their goals.
J.

21.

" '--'-" '- . .**-, . . .- ' " " " . *. .

f. Training required. Some techniques may be esoteric and require extensive trai,,ing

or personnel with special skills or backgrounds (e.g., algebraic and symbolic

analysis). Other techniques involve common skills and are simple to apply (e.g.,

design and code walkthroughs).

g. User constraints. General rather than specific user constraints were considered in

evaluating the techniques. The basic features characteristic of software test tools

and techniques were used to determine the constraints imposed on the user. A tool

may be available now only on the computers of a specific vendor, which limits the

usefulness of that tool. However, in 6 months or a year, a similar tool may be

available on many machines. In building rating tables for the guidebook, we

considered the generic features, not the specific software test tools. The guidebook

will provide considerations for evaluating specific tools and techniques.

h. Typical computer resources required. Each technique was evaluated in terms of its

computer resources (time and storage) requirements compared to the potential

benefits. Some techniques, such as peer code review, require little or no computer

resources; whereas, other approaches (random testing or real-time testing) may use

large blocks of time, large blocks of primary and secondary storage, or a consider-

able number of other computer resources.
C.

i. Level of human interaction required. The various techniques considered in the

tables vary considerably in the level of human interaction required. This human -

interaction must be considered at several levels: first, the amount of time the

human must be involved compared to potential benefits; second, the degree of

expertise required to effectively use the technique. The greater the proportional

amount of time required or the level of expertise, the less attractive the technique

was rated.

I. Usefulness of techniques in supporting modern programming practices. If the I
techniques encouraged the use of modern programming practices by the developers,

or produced results useful for modern programming practices, they were rated more .7.-1

attractive.

22. j
S'%

CC,." * -*,

..-. *,--*-2-*-".,*..-......
. ,• • . • • • ,

' 3.3 SELECTION OF TOOL TAXONOMY

An understandable, comprehensive, user-friendly taxonomy of software test techniques

was necessary for building the tables. Several taxonomies were evaluated as to their

effectiveness according to the following criteria: they should be easy to understand,

rational and systematic, free of inconsistencies, compatible with the intent of the

guidebook, recognizable by the target audience, and compatible with the test phase

relationship. The taxonomy has four major categories:

* Static analysis.

Dynamic analysis.

Symbolic testing.

Formal analysis.

The first two categories include many software testing techniques. The complete

taxonomy is described in detail in the following paragraphs.

Static Analysis. This is an automated analysis of computer program source code without

executing the computer program. The major subcategories of static analysis are-

a. Code reviews and walkthroughs.

I. Peer Review - review of code and design by project personnel.

2. Formal Review - review by customer at scheduled points in the life cycle.

b. Error and anomaly detection techniques:

I. Code Auditing - automated review of source code with respect to prescribed

programming standards.

2. Interface Checking - analysis of interface for consistency and completeness.

3. Physical Units Checking - analysis of units of measure for consistency.

4. Data Flow Analysis - analysis of sequences of program events to locate errors. .;

c. Structure analysis techniques and documentation:

I. Structure Analysis - analysis of design or program structure to identify logical

f laws.

2. Documentation production of documentation resulting from analysis (e.g.,

set-use listings).

23.

% - -

~~~~e .. 0.. .



'[,,,; - ,J ' N -'_ . .- -- -- .... .- -.- . . . .•. . - . . . . . ......- - ..

d. Program quality analysis:

I. Halstead's Software Science - an attempt to formulate fundamental relation-

ships for all computing languages.

2. McCabe's Cyclomatic Number - an assessment of program complexity based on

the number of branches.

3. Software Quality Measures - a system to predict various software qualities ,

(e.g., reliability, maintainability) based on a multitude of small, discrete

measures, called metrics.

e. Input space partitioning. A path in a program consists of a possible flow of control. r

In path analysis, the input space is partitioned into path domains-those subsets of

the program input domain that cause execution of the paths.

t. Path analysis - detection of missing paths or incorrect paths.

2. Domain testing - selection of test data on or near domain boundaries.
3. Partition analysis - a method in which specifications of the program are

partitioned into subspecifications that are then matched with domain parti-

tions to generate a more sensitive test.

f. Data-flow guided testing. This is a method for obtaining structural information

about programs (widely used for compiler design and optimization). One result is a
set of dynamically meaningful relationships among program variables. Control flow

information about the program is then used to construct test sets for the paths to be

7 tested. %

Dynamic Analysis. This is a method of analyzing a computer program in which the

program itself is executed on a computer. The major subcategories of dynamic analysis

are- 'q.

a. Instrumentation-based testing. Programs are instrumented by statements or rou-
tines that do not affect the functional behavior of the program but record properties

7- of the executing program.

1. Path and structural analysis techniques - analysis of test coverage, execution

frequency of branches, statements, etc.

'I'24. e

."" * . *,,"

- **.". . .,... * .a.

I 1 'I '%'.
"

•"% I"I
I I

I1 " i I i- I* *-! "
I

I/" " i IIIi
I

"
I

"n-I" 
I

! " /II I ..= j L L 1%



2. Performance measurement techniques:

(a) Timing and resource analysis - analysis of execution time and computer

storage resources required by the software.

(b) Algorithm complexity analysis - analysis of algorithm using a formalized

-o--"approach.

. - 3. Assertion checking - a technique using assertion statements in the source code

* . that are then checked for validity during execution.

4. Debug aids - various facilities permitting trace, breakpoint, register inspection

during or following execution.

b. Random testing. This is a black-box technique in which a program is tested by
randomly sampling inputs.

c. Functional software testing. The specification of the program is viewed as an
abstract description of its design and is then used as a guide to generate functional

test data. Extremal and special values are the most important values in the input
domain of a variable.

d. Mutation testing. Mutation testing is a technique for evaluating test data adequacy.
The program under test is changed (forming mutants of the original); test data are

applied to the mutants. If the test data uncover the mutants, the data are

accomplishing its job; if not, either the program is still correct in its mutated form,

or the test data were inadequate to locate the mutant error.

e. Real-time testing. This is the testing of software on "host" computers using
0 environment simulators, as well as the testing of software on the "target" computer

in the actual hardware or software system, or a simulation thereof.

Ja. Symbolic Testing. The input data and variables of a program are given formal or symbolic

values, and the possible executions are characterized formally. The execution of the

program is simulated by a symbolic evaluator that interprets the formal representation of

the program and data.

25. 6%

%.e

'---,-



Formal Analysis. This is a formal method of proving a design correct and uses rigorous
mathematical techniques to analyze the algorithms of a solution. At present, formal
analysis is primarily a manual activity with limited automated assistance.

This taxonomy provided the most useful working categorization for test techniques for the

internal tables of the Software Test Guidebook.

3.4 SOFTWARE ENVIRONMENTS CHARACTERISTIC OF USAF MISSIONS 0

The task I survey provided information on the kinds of software characteristics of each
USAF mission. A first draft of a table listing all the software types characteristic of
each mission area was prepared, based on the task 1 interim technical report. This draft 0

was submitted to the mission focal points for their review. The comments and criticisms

were then used to build a final list.

. There was much overlap between the mission areas, and a method of efficiently
characterizing them for the guidebook was needed. Several software classification
schemes were produced and evaluated. Guidelines used for evaluating classification

*schemes were the same as those used in selecting a tool taxonomy: the structure should
be parallel in nature, the software types should be as unique as possible, and the
terminology should be as clear as possible. A software classification scheme was chosen,

and all the software types characteristic of the USAF missions were classified using that

scheme. The classification of software categories follow.

Batch (general).
Event control.

Process control.

Procedure control.
Navigation.

Flight dynamics.

Orbital dynamics.
Message processing.

Diagnostic software.

Sensor and signal processing.

Simulation.

26.

, -.lot".
% % *

'--"-,



* Database management.
* Data acquisition.

Data presentation.
&6 

1~

Decision and planning aids.

A..* * Pattern and image processing.

* Computer system software.
* Software development tools. 

*..

A27

r -vc



t -I

",..,.'

-. 4.0 SUMMARY OF TASK 3

4.1 GUIDEBOOK DEVELOPMENT

Task 3 comprised two parts: first, design and prepare the guidebook; second, write a final
report to describe the entire three-task research effort. The first part comprised about

95% of the task 3 effort and will be the only subject of this section.

The design of the guidebook was largely a matter of building a text structure to support

the revised table structure from task 2. The guidebook preparation constituted two main

efforts. The first effort was to prepare the text. One part of the text preparation was to

write the directions and guidelines for tool selection. The second part of the text

preparation was to assemble material that described all testing techniques and methodolo-

gies. The second effort was to prepare graphic material for the guidebook. This included

the job of (1) rebuilding the guidebook tables to conform to the Air Force direction given

at the task 2 oral report and (2) preparing graphic material to explain guidebook usage. rp..

4.2 PREPARATION OF TEXT

The guidebook design was based on the table design completed in tasks I and 2. Several

changes were made to the outline to structure the guidebook so that it is easy to use.

Directions and guidelines were written so that they are compact, clear, and easy to use.

Thus, these sections are short and contain only general guidelines and considerations.

-. Complete descriptions of techniques and their implementation were put into a separate

section. This design frees the instruction sections of technique-specific information to

make the methods of technique selection more obvious.

Most of the material for the section on technique descriptions was derived from two

National Bureau of Standards publications: NBS Special Publications 500-93, "Software

Validation, Verification, and Testing Techniques and Tool Reference Guide," (POW82A)

and 500-98, "Planning for Software Validation, Verification, and Testing," (POW82B). This

material was reviewed and updated as necessary.

28.

% %% r,%



4.3 PREPARATION OF GRAPHIC MATERIALS

As a result of the task 2 oral review, several major changes were made in the tables used

for test technique selection. The basic categorization of testing techniques (taxonomy)

was restructured. In addition, two of the tables in the original design were combined into

one table.

The structured tables were compact and efficient to use, but difficult to understand at

first glance. To correct this situation, a number of new diagrams were designed and built

on the word processor. The diagrams explained in a step-by-step graphic manner how the

guidebook and tables were to be used.

4.4 EDITING AND REVIEW

Technical editing was done first by the authors, who checked one anothers material. The

guidebook was then reviewed by the project manager. After completing the first draft, an

independent technical editor was assigned to review the guidebook.

29.

-. . •°..°.



5.0 BIBLIOGRAPHY

(ADA79) "Ada Environment Workshop." Sponsored by DoD High Order Language

Working Group, November 27-29, 1979, San Diego.

(ADR8I) Adrion, W. R., M. A. Branstad, and J. C. Cherniavsky. "Validation, Verifica- .-. -i

tion and Testing of Computer Software." NBS Special Publication 500-75,

Superintendent of Documents, U.S. Documents, U.S. Govt. Printing Office, 6

Wash, D.C., February 1981.

(AH074) Aho, A.V., J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of

Computer Algorithms. Addison-Wesley, Reading, Mass., 1974.

(AH077) Aho, A.V. and J.D. Ullman. Principles of Compiler Design. Addison-Wesley,

1977.

(AIR78) "Airborne Systems Software Acquisition Engineering Guidebook for Verifica-

tion, Validation, and Certification", Air Force document, ASD-TR-79-5028,

1978.

(ALF76) Alford, M. W. "A Requirements Engineering Methodology for Real-Time

Processing Requirements," TRW Software Series, TRW-SS-76-07, Systems

Engineering and Integration Division, Sept., 1976.

(ALF79) Alford, M. A. "Theoretical Foundations of Toolsmithing." Proceedings of

COMPSAC 79, IEEE Catalog No. 79CH1515-6C, November 1979.

(ALL76) Allen, F.E. and J. Cocke. "A Program Data Flow Analysis Procedure", CACM,
Vol. 19, No. 3, March 1976.

(ARE80) "A Review of Software Maintenance Technology." (RADC TR-80-13) dtd Feb

80. Available from the U.S. Dept. of Commerce, National Technical Informa-

tion service, 5285 Port Royal Road, Springfield, Virginia, 22151, Accession No.

A083-985. """

30.
.h .,

-

, ::..*...w,. '- , *= " :- " *= ,=. , ,' ." T " "" " "" "" "" r .. 5,5 .* . *. % .'.,,? '.' '.'. . ...... . .. .. .. . ... ' ' ' ' ,' ' ... *- .'>. , . %,,* ',- - .-..



(AUT77) "Automated Data Systems Documentation Standards." Department of Defense

standard 7935.1-S, September 1977.

(AUT79) "Automated Software Tools Catalog." Boeing Computer Services document

10236, 1979.

(BAR78) Barbuto, P., Jr. and J. Geller. "Tools for Top-Down Testing." Datamation,

Vol. 24, No. 10, October 1978, pp. 178-182.

(BAR80) Barry, M. "Airborne Systems Software Acquisition Engineering Guidebook for

Software Testing and Evaluation." TRW report ASD-TR-80-5023, March 1980.

(BEL74) Bell, D.E. and J.E. Sullivan. "Further Investigations into the Complexity of

Software". (Tech. Rep. MTR-2874). Bedford, MA: MITRE. 1974.

(BEN78) Benson, J.P. and S.H. Saib. "A Software Quality Assurance Experiment",

Proceedings of the Software Quality and Assurance Workshop, San Diego, Nov.

1978.

(BEN79) Bentley, J.L. "An Introduction to Algorithm Design", Computer, Feb. 1979.

(BLA71) Blair, J. "Extendable Non-Interactive Debugging." Debugging Techniques In

Large Systems, Prentice-Hall, Englewood Cliffs, N.J., 1971, pp. 93-115.

(BOE75) Boehm, B., R. McClean, and D. Urfrig. "Some Experience with Automated

Aides to the Design of Large-scale Reliable Software", IEEE Transactions of

Software Engineering, SE-I, 1975(125-133).

(BOY75) Boyer, R.S., B. Elspas, and K.N. Levitt. "SELECT-A Formal System for

Testing and Debugging Programs by Symbolic Execution", Proceedings of the

International Conference on Reliability of Software, April 1975.

(BRA75) Bratman, H. and T. Court. "The Software Factory." Computer, May 1975, pp.

28-37.

. 31. ,



(BRA77) Bratman, H. and M. C. Finfer. "Software Acquisition Management Guidebook:

Verification." System Development Corporation report ESD-TR-77-263,

August 1977.

(BR075) Brooks. The Mythical Man-Month. Addison-Wesley, 197".

(BR077) Brown. "Impact of Modern Programming Practices on System Development."

RADC-TR-77-121, 1977.

(BR078) Brown, J.R. and K. Fischer. "A Graph Theoretic Approach to the Verification

of Program Structures", Proceedings of the 3rd International Conference on

Software Engineering, May 1978.

(BRO82) Brownell, L. "Jovial 373 Code Auditor", Technical Report, Proprietory Soft-

ware Systems, Inc., 9911 W. Pico Blvd., Los Angeles, CA 90035, 16 March

* 1982.

(BRO83) Brown, P.3. "Error Messages: The Neglected Area of Man/Machine Inter-

face?", CACM, Vol. 26, No.4, April 1983.

(BUL74) Bulut, N. and M.H. Halstead. "Impurities Found in Algorithm Implementation",

SIGPLAN Notices, 1974.

(BUX80) Buxton J. N. "An Informal Bibliography on Programming Support Environ-

ments." SIGPLAN Notices, December 1980.

(CAM8I) Campbell, 0. and S. Saib. "Embedded Software Verification Through

O" Instrumentation", NAECON 81, May 19-21, 1981, Vol. 1, pp. 395-401.

(CHE79) Cheatham, T.E., G.H. Holloway, and J.A. Townley. "Symbolic Evaluation and

the Analysis of Programs", IEEE Transaction on Software Engineering, SE-5,4,
".- I

*O July 1979.

(CHO) Chow, T.S. "A Generalized Assertion Language", Proceedings 2nd ICSE, S.F.,

Calif., pp. 392-399.

32. 1
. , .. . . . . . . ... , . . . , . .. . . . . .,. ,. -I



(CLA76) Clarke, L.A. "A System to Generate Test Data and Symbolically Execute

Programs", IEEE Transaction of Software Engineering, SE-2, Sept. 1976.

(CLA78) Clarke L. "Top-Down Testing with Symbolic Execution." Digest for the

Workshop on Software Testing and Test Documentation, Ft. Lauderdale,

Florida, 18-20 December 1978, pp. 191-196.

(COC70) Cocke, J. and T.J. Schwartz. Programming Languages and Their Compilers,

Preliminary Notes, Second Revised Version, Courant Institute of Mathematical

Sciences, New York, 1970.

(COD76) "Code Reading Structured Walk-Throughs and Inspections", IBM, IPTO, Support

Group, World Trade System Center, Postbos 60, Z- mmeer, Netherlands,

March 1976.

(CON70) "Control Flow Analysis". SIGPLAN Notices, 1970, pp. 1-19.

(COR76) Cornall, L.M. and M.H. Halstead. "Predicting the Number of Bugs Expected In

a Program Module", (Tech. Rep. CSD-TR-205). West Lafayette, IN: Purdue

University, Computer Science Department, October 1976.

(CR075) Crocker, S. and B. Balzer. "The National Software Works: A New Distribution

System for Software Development Tools." Workshop on Currently Available

Testing Tools, April 1975, p. 21.

(CUR79) Curtis, B., S.B. Sheppard, and P. Milliman. "Third Time Charm: Stronger

Prediction of Programmer Performance by Software Complexity Metrics",

Proceedings of the Fourth International Conference on Software Engineering. 0

New York: IEEE, 1979.

(DAL77) Daly, E.B. "Management of Software Development", IEEE Transactions on

Software Engineering, May 1977.

(DAV) Davis, C.G. "Testing Large, Real-Time Software Systems", Infotech State-of-

the-Art Report - Software Testing, Infotech International, Berkshire, England,

Vol. 2, pp. 85 - 105.

33.

.16



(DEC78) DEC IAS/RSX-1 "Utilities Procedure Manual", Digital Equipment Corpora-

tion, 1978.

(DEF79) "Defense Mapping Agency: Modern Programming Environment Study-Final J
. Technical Report." Boeing Computer Services and Planning Systems Interna-

*, tional, Contract No. SB 1438(A)-79-C-001, October 1979.

(DEM79) DeMillo, R.A., R.3. Lipton, and F.G. Sayward. "Program Mutation: A New

Approach to Program Testing", Infotech State-of-the-Art Report on Software

Testing, V.2, INFOTECH/SRA, 1979, pp. 10 7 - 12 7 .

(DEM83) DeMillo, R. A., and R. J. Martin. "The Software Test and Evaluation Project:

A Progress Report." Proceedings of the National Conference on Software Test

and Evaluation, 1-3 February 1983.

(DER76) DeRemer and Kron. "Programming-in-the-Large Versus Programming-in-the-

Small." IEEE Transactions on Software Engineering, June 1976.

(DEU81) Deutsch, M.S. "Software Project Verification and Validation", IEEE Computer,

April 1981.

(DON80) Donahoo, J. D. and D. Swearinger. "A Review of Software Maintenance

Technology." RADC report RADC-TR-80-13, February 1980.

(ELM73) Elmendorf, W.R. "Cause-Effect Graphs in Functional Testing", TR-00.2487,

IBM Systems Development Division, Poughkeepsie, New York, 1973.

(ELS76) Elshoff, 3.L. "Measuring Commercial PL/I Programs Using Halstead's

Criteria", SIGPLAN Notices, 1976,11, 38-46.

d (ELS72) Elspas, B., et. al. "An Assessment of Techniques for Proving Program

Correctness", ACM Computing Surveys, 4, June 1972.

k-' (END75) Endres. "An Analysis of Errors and Their Causes in System Programs." IEEE

Transactions on Software Engineering, June 1975.

34.

,• e . ,- •. ... . • " < - ., - -, . ,., ..



(FAC77) "Factors in Software Quality", Final report, RADC-TR-77-369, 1977.

(FAG76) Fagan, M.E. "Design and Code Inspections to Reduce Errors in Program

Development", IBM Systems Journal, No. 3, 1976.

(FA178) Fairley, R. E. "Tutorial: Static Analysis and Dynamic Testing of Computer

Software." Computer, April 1978, pp. 14-24.

- (FEL79) Feldman. "MAKE - A Program for Maintaining Computer Programs." Soft- ;
ware Practice and Experience, April 1979. .-

(FI574) Fischer, K.F. "User's Manual for Code Auditor, Code Optimizer Advisor, Unit

Consistency Analyses", TRW Systems Group, Redondo Beach, Calif., July 1974.

(FIT78) Fitzsimmons, A.B. and L.T. Love. "A Review and Evaluation Science". ACM

Computing Surveys, 1978, 10, 13-18.

(FLE79) Fleiss, J., G. Phillips, and A. Alvarez. "Compiler Acceptance Guidebook."
--r. RADC report RADC-TR-77-148, May 1979.

(FL067) Floyd, R.W., T.J. Schwartz, editor. "Assigning Meanings to Programs",
Mathematical Aspects of Computer Science, 19, American Mathematical

Society, Providence, R.I., 1967.

(FOS76) Fosdick, L.D. and L.3. Osterweil. "Data Flow Analysis in Software Reliabil-

ity", ACM Computing Surveys, 8, pp.305-330, Sept. 1976.

(FRE77) Freedman, D.P. and G.M. Weinberg. Ethno-Technical Review Handbook.

Ethnotech, Inc., 1977.

(FUM76) Fumani, Y. and M.H. Halstead. "A Software Physics Analysis of Akiyama's .-

Debugging Data", Proceedings of the MRI 24th International Software
Engineering. New York: Polytechnic Press, 1976.-]

35.

_..
h,. w - . - ' .. '".",.," .". -.-. ,",_ . ".,', w . . - - .- '.- .-.. "-." .. " .. "-.". " .. "."'.'"."" ""."'." ., . .. ." " ", _l



' *. .* *.". . ". -. *- -*. .. . .. oh

- .1_-=--' '7

(GAN79) Gannon, C., R.N. Meeson, and N.B. Brooks. "An Experimental Evaluation of

Software Testing - Final Report," General Research Corp., CR-1-854, spon-

sored by Air Force Office of Scientific Research, May 1979.

(GAN80) Gannon, C. "Jovial 373 Automated Verification System-Study Phase", RADC-

TR-80-261, August 1980, NTIS accession no. A091-190.

(GIL77) T. Gilb, "Software Metrics," Winthrop Publishers, Inc., Cambridge, Mass, 1977.

(GLA76) Glass, R. L. "An Experiment in the Use of Analyzers as a Computer Software

Reliability Tool in the BAC Project Environment", Boeing Aerospace Coin-

pany D180-19987-1, August 1976.

(GLA78) Glass, R. L. "Software Reliability Methodology Survey and Guidebook", The
" Boeing Company, D180-22930-1, 1978.

(GLA79A) Glass, R. L. Software Reliability Guidebook. Prentice-Hall, 1979.

(GLA79B) Glass, R. L. "Software Reliability at Boeing Aerospace: Some New Findings."

Boeing Aerospace Co. report D180-25392-1, September 1979.

(GLA79C) Glass, R. L. "Real Time Software Debugging and Testing: Proposed

Solutions." Boeing Aerospace Co. report D180-25249-3, September 1979.

(GLAS1) Glass, R. L. and R. Noiseux. Software Maintenance Guidebook. Prentice Hall,

Inc., 1981.

• (GLA-A) Glass, R. L. "Automated Tools for Software IV & V." The Boeing Co.

Unpublished draft.

(GLA-B) Glass, R. L. "Recommended: A Minimum Standard Software Toolset". The

*Boeing Co., Unpublished draft.

(GOD77) Godoy and Engels. "Software Sneak Analysis." Proceedings of the AIAA

Conference on Computers in Aerospace, 1977.

. .. o

36.

* ..- '.--.. . .

V. ." ."." ," . -" ', ."." ' ' ." ." , .,,.." ' .. ' .' ' . _' ,. 2 ' v _' 4 'r ,_ 2 r" , . "•" ,', e ," J o . ., '""'

.- ..-.-.. '-'-' '.".%.' . ,..' .. .. '.'.%. .. % . ,. % % -- -. ' -%-, - - '% 6% .#V _% %_ ' '--



(GOESI) Goel, Dr. Amrit. "A Guidebook for Software Reliability Assessment", pr

under contract No. F30602-81-C-0169, for RADC.

(G0075) Good, D.I., R.L. London, and W.W. Bledsoe. "An Interactive Pi
* Verification System", Proceedings of the 1975 International Confere

Reliable Software, IEEE Catalog 175CH0940-7CSR. "

(GOR76) Gordon, R.D. and M.H. Halstead. "An Experiment Comparing FOF

Programming Times with the Software Physics Hypothesis", AFIPS Pr

ings, 1076, 45, 935-937.

(HAL73) Halstead, M.H. "An Experimental Determination of the 'Purity' of a

Algorithm", ACM SIGME Performance Evaluation Review, 1973, 2(1), 1,

(HAM82) Hamer, P.G., G.D. Frewin. "M. H. Halstead's Software Science-A C

Examination", Proceedings of the 6th International Conference on S(

Engineering, Tokyo, Japan, September, 1982.

(HAR7) Hartwic, R.D. "The Advanced Targeting Study", SAMSO-TR-71-124. ii
June 1971.

(HEC73) Hecht, M.S. and J.D. Ullman. "Analysis for a simple algorithm for glot

flow problems". Proc. ACM SIGACT/SIGPLAN Symp. on Princi I

Programming Languages. Boston, Mass., Oct. 1973.

(HEC75) Hecht, M.S. and J.D. Ullman. "A Simple Algorithm for Global Dal

Analysis Problems", Siam Journal of Computing, Vol. 4, No. 4, Decembe

(HEC8IA) Hecht, H. "Synopsis of Interviews from a Survey of Software A Tool 'V
SoHaR Inc. report NBSIR 81-2388, November 1981. '

(HEC8lB) Hecht, H. "Final Report: A Survey of Tool Usage." NBS Special Pub

500-82, Superintendent of Documents, U.S. Govt. Printing Office, Wa,
20402, November 1981.

-. °°

37.

Zr *0 %L



(HEC82) Hecht, H. "The Introduction of Software Tools." NBS Special Publication 500-

91, Superintendent of Documents, U.S. Govt. Printing Office, Wash, D.C.

20402, September 1982.

(HEI82) Heidler, W., et al. "Software Testing Measures." RADC-TR-82-135, May

... 1982.

S. (HET73) Hetzel, W. Program Test Methods. Prentice-Hall, 1973.

(HET76) Hetzel, W. "An Experimental Analysis of Program Verification Methods",

Ph.D. Thesis, University of North Carolina, 1976.

(HOA61) Hoare, C.A.R. "Partition (Algorithm 63) and QUICKSORT (Algorithm 64)",

CACM, Vol.4, No. 7, July 1961.

(HOA64) Hoare, C.A.R. "QUICKSORT", Computer Journal, Vol.5, No.1, 1964.

(HOA7I) Hoare, C.A.R. "Proof of a Program: FIND", CACM, Vol.14,No.1, Jan. 1971,

pp.39-45.

(HOR75) Horowitz. Practical Strategies for Developing Large Software Systems.
Addison-Wesley, 1975.

(HOR78) Horowitz, E. and S. Sahni. Fundamentals of Computer Algorithms. Computer

Science Press, Potamac, MD. 1978.

(HOU81IA) Houghton, R. C., Jr. "Features of Software Development Tools." NBS Special
* Publication 500-74, Superintendent of Documents, U.S. Govt. Printing Office,

Wash, D.C. 20402, February 1981.L.. (HOU8IB) Houghton, R. C., Jr., editor. "Proceedings of NBS/IEEE/ACM Software Tool

Fair." NBS Special Publication 500-80, Superintendent of Documents, U.S.

Govt. Printing Office, Wash, D.C. 20402, October 1981.

-. . *.

38.

... %-%

". .- 4%% JZ, -,V. "es .-, , . . . . ; . ' . ,. ...... ..., '.., . .. .. . ,, .. .,



(HOU82) Houghton, R. C., Jr. "Software Development Tools." NBS Special Publication

500-88, Superintendent of Documents, U.S. Govt. Printing Office, Wash, D.C.

20402, March 1982. 1
-I (lHOW A) Howden, W. E. "Functional Testing and Design Abstractions". A Journal of

Systems and Software (to appear).

...-.

(HOW) Howden, W. E. "Symbolic Testing - Design Techniques, Costs, and Effective-

ness", U.S. Dept. of Commerce, NTIS PB-268, 517, Springfield, VA. I-.

(HOW75) Howden, W. E. "Methodology for Generation of Program Test Data", IEEE

Transactions on Computers, TC-24, May,1975.

(HOW77) Howden, W.E. "Symbolic Testing and the Dissect Symbolic Evaluation System",

IEEE Trans. on Software Engineering, Vol. SE-3, No. 4, July 1977.

(HOW78A) Howden, W. E. "An Evaluation of the Effectiveness of Symbolic Testing."

Software Practice and Experience, July 1978.

(HOW78B) Howden, W. E. "Selection of Fortran Static Analysis Techniques." University

of Victoria report DM-147-IR, August 1978.

(HOW78C) Howden, W. E. "Functional Program Testing." University of Victoria report

DM-146-IR, August 1978. e-e

(HOW79) Howden, W. E. "An Analysis of Software Validation Techniques for Scientific

Programs." University of Victoria report DM-171-IR, March 1979.

(HOW80A) Howden, W. E. "Validation of Scientific Programs", U.S. National Bureau of

." Standards, Wash., D.C., 1980.

i'" •(HOW80B) Howden, W. E. "Completeness Criteria for Testing Elementary Program-

Functions", University of Victoria, Department of Mathematics, May 1980.

39.

.% . . . .. . .

1,' , ' , 6. . , . ' ,. ,"%, " .' .. , , " .. " .. . ." . % "W' ' " ., , . , . ., , , . . . .a., d ,



(HOW80C) Howden, W. E. "Functional Program Testing". IEEE Transactions on Software

Engineering, SE-7, March 1980.

(HOW80D) Howden, W. E. "Functional Testing and Design Abstractions". Journal of S

l* Systems and Software, Vol. 1, 307-313, 1980.

(HUA75) Huang. "An Approach to Program Testing", ACM Computing Surveys, Septem-

ber 1975.

(HUA79) Huang, J.C. "Detection of Data Flow Anomaly Through Program Instrumenta-

tion", IEEE Trans. on Software Engineering, Vol. SE-5, No. 3, May 1979.

(JAC71) Jackson and Bravdica. "Software Validation of the Titan IIIC Digital Flight

Control System Using a Hybrid Computer." Proceedings of the 1971 Fall Joint

Computer Conference.

(KAR78) Karr, M., D.B. Loveman, Ill. "Incorporation of Units into Programming

Languages", CACM, Vol.21, No.5, pp.385-391, May 1978.

(KEN76) Kennedy, Ken. "A Comparison of Two Algorithms for Global Data Flow

Analysis", Siam Journal of Computing, Vol. 5, No. 1, March 1976.

(KER76) Kernighan B. W. and P. J. Plauger. Software Tools. Addison-Wesley, 1976.

(KIL73) Kildall, G.A. "A unified approach to global program optimization". Proc.

ACM SIGACT/SIGPLAN Symp. on Principles of Programming Languages.

Boston, Mass., Oct. 1973.

(KIN76) King, J.C. "Symbolic Execution and Program Testing", CACM, 19, 7, July

1976, pp.385-394.k

(KIN8I) King, Bill. "ARGUS on BITS." Boeing Computer Services-SAMA Software

Engineering Technology, November 1981.

40.
... =

?i

6~., ,'-6



~.•. . -

(LAP74) L. J. LaPadula, "Engineering of Quality Software Systems, Volume VIII,

Software Reliability Modeling and Measurement Techniques," RADC-TR-74-

325, Mitre Corp., Bedford, Mass., 1975 (NTIS AS/A-007773).

(LIP78) Lipton, R.J. and F.G. Sayward. "The Status of Research on Program

Mutation", Digest of the Workshop on Software Testing and Test Documenta- ..- ,-.

tion, Fort Lauderdale, FLA., 1978, pp. 3 5 5 - 3 7 3 .

(LOV76) Love, L.T. and A. Bowman. "An Independent Test of the Theory of Software

Physics", SIGPLAN Notices, 1976,11 pp.4 2 -4 9 .

(MAN74) Mangold, E.R. "Software Error Analysis and Software Policy Implications",

IEEE EASCON, 1974, pp. 123-127.

(MAN78) Manna, Z. and R. Walding. "The Logic of Computer Programming", IEEE-TSE, .
SE-4, No.3, May 1978, pp. 19 9 - 2 2 9 (especially pages 199-204).

(MAR78) "Problem Program Evaluator (PPE) User Guide", Boole and Baggage, Inc.,

Sunnyvale, Calif., March 1978.

(MCC76) McCabe, T.J. "A Complexity Measure", IEEE Transaction on Software

Engineering, Vol. SE-2, No.4, December 1976.

(MEL79) Melton, R. "Fortran Automated Verification System (FAVS)", Vol. 1, technica

report, RADC-TR-78-268, Jan. 1979, NTIS accession no. A065-405.

(MELSI) Melton, R. "Cobol Automated Verification System - Study Phase", RADC-TR.

81-11, March 1981, NTIS accession no. A098-755. 7

(MER81) Merilatt, R. L., M. K. Smith, and L. L. Tripp. "Computer Software VerificE

tion and Validation: A General Guideline." Boeing Computer Services repor

BCS-40342, June 1981.

(MEY75) Meyers, G. Reliable Software Through Composite Design, Petrocelli/Charte

.%%

1975.

441

'......""'..---.- .... -.- . ... ...... . 4 *. ...- : .b -*%. c. - .. . .* . *. . ... :... . ..-......... % ,..?..,::-....., -s-

- ,****, * **.*,.*.. , ... , , , •. . ' ,, ,,¢ ' ' .4 - ... ''. . .. . . . ,,-, . ._',',.,., c,,,,'



(MIL72) H. D. Mills, "On the Statistical Validation of Computer Programs, FSC-72-
6105, IBM Federal Systems Division, Gaithersburg, Md., 1972.

(MIL75) Miller, E. and R.A. Melton. "Automated Generation of Testcase Datasets",

1975 International Conference on Reliable Software, Los Angeles, April 1975.
,..,. .

(MIL81) Miller, E. and W. E. Howden. TUTORIAL: Software Testing and Validation

Techniques. IEEE Computer Society Press, 1981.

(MYE76) Myers, G. Software Reliability: Principles and Practices. Wiley-Interscience,

New York, 1976.

(MYE78) Myers. "A Controlled Experiment in Program Testing and Code : :-
Walkthroughs/Inspections." Communications of the ACM, September 1978.

1A (MYE79) Myers, G. The Art of Software Testing. Wiley-Interscience Publication, 1979.
°.I-,.

*.(NAF72) Naftaly, S.M. and Cohen, M.C. "Test Data Generators and Debugging .

Systems", Workable Quality Control, Part I and I, Data Processing Digest,

Vol.18, No.2 and 3, February and March, 1972.

' (NBS80) "NBS Software Tools Database." dtd Oct 80. Available from the U. S. Dept.
of Commerce, National Technical Information Service, 5285 Port Royal Road,

Springfield, Virginia, 22151, Accession No. PB8l-124935.

(NG78) Ng and Young. "A 1900 Fortran Post Mortem Dump System." Software

Practice and Experience, July 1978.

(OST76) Osterweil, L.J. and L.D. Fosdick. "DAVE-A Validation Error Detection and

Documentation System for Fortran Programs", Software Practice and Experi-

ence, 6, pp.473-486, Sept. 1976.

(OST78) Osterweil, L. J., J. R. Brown, and L. G. Stucki. "ASSET: A Lifecycle

Verification and Visibility System." Proceedings of COMPSAC 78, IEEE
*.,°4

Catalog No. 78CH1338-3C, November 1978, pp. 30-35.

42.

.............-................. ....... ..... ....... .V ,, - ",,, .%'.", %.." . .-.., .- ,.,. '-• . . ." - " """"" "



(OTT79) Ottenstein, L.M. "Quantitative Estimates of Debugging Requirements", IEEE

Transactions on Software Engineering, 1979, Vol.5, pp. 5 04 -5 1 4 . j
(PA177) Paige. "Software Testing Principles and Practice Using a Testing Coverage

Analyzer." Transactions of the Software '77 Conference, October 1977.

(PAN78) Panzl,D.J. "Automatic Software Test Drivers", IEEE Computer, April 1978.

(POW82A) Powell, P. B., editor. "Software Validation, Verification, and Testing Tech-

nique and Tool Reference Guide." NBS Special Publication 500-93, Superin-

tendent of Documents, U.S. Govt. Printing Office, Wash, D.C. 20402,

September 1982.

(POW82B) Powell, P. B., editor. "Planning for Software Validation, Verification, and

Testing." NBS Special Publication 500-98, Superintendent of Documents, U.S.

Govt. Printing Office, Wash, D.C. 20402, November 1982.

(PRE79) "Preliminary Ada Reference Manual", SIGPLAN Notices, Vol.14, No.6, part A,

June 1979.

(PR083) "Proceedings of the National Conference on Software Test and Evaluation."

National Security Industrial Association, Software Group, 1-3 February 1983.

(QUA79) "Quantitative Software Models." Data and Analysis Center for Software,

order No. SRR-1, RADC/ISISI (315) 336-0937, Autovon 587-3395.

(OUA83A) "Quality Metrics for Distributed Systems", Final report, Boeing Aerospace

Company document, D-182-11377-1, -2, -3, 1983. 0

(QUA83B) "Quality Metrics Framework Enhancements for Software Aquisition" (CDRL
A003), RADC contract F30602-82-C-0137 with Boeing Aerospace Company,
July 1983.

77b

(RAM75) Ramamoorthy, C.V. and K.H. Kim. "Software Monitors Aiding Systematic

Testing and Their ODtional Placement", Proceedings of the First National

43.

" e % .- * "" ... .'r"" . ,' " . .' ...- " " -.' - . --.-- -. ' r . ..-. 4.
......--.......,.-.- .... '..-.........'...-.. "



Conference on Software Engineering, IEEE Catalog No. 75CH0992-8C, Sep-

tember, 1975. ".]

(RE174) Reifer, D. J. and R. L. Ettenger. "Test Tools: Are They A Cure-All?".

SAMSO-TR-75-13, October 1974.

(RE177) Reifer, D. J. and Trattner. "A Glossary of Software Tools and Techniques."

IEEE Computer, July 1977.

(REI80) Reifer, D. J. and H. A. Montgomery. "Final Report, Software Tool Taxon-

omy." SMC-TR-004, I June 1980.

(RET) Reifer, D. J. "Software Tools Directory." Reifer Consultants Inc. 2733

Pacific Coast Highway, Suite 203, Torrance, CA 90505. .%

(RIC8I) Richardson, D.J., L.A. Clarke. "A Partition Analysis Method to Increase

Program Reliability". Proceedings of the Fifth International Conference of

Software Engineering, 1981, pp.244-253.

(RUD77) B. Rudner, "Seeding/Tagging Estimation of Software Errors: Models and

Estimates," RADC-TR-77-15, Polytechnic Institute of New York, 1977 (NTIS

AD/A-036655).

(RYD75) Ryder, B.G.and A.D. Hall. "The PFORT Verifier", Computing Science Techni- 0
cal Report # 12, Bell Laboratories, Murry Hill, New Jersey, March 1975.

(SAI82) Saib, S. H., et al. "Validation of Real-Time Software for Nuclear Plant Safety
* Applications." Electric Power Research Institute report EPRI NP-2646,

Project 961 Final Report, November 1982.

(SCH73) Schaefer, M., A Mathematical Theory of Global Program Optimization.

Prentice-Hall, Englewood Cliffs, N.J., 1973. 0

(SCH81) Schindler, M. "Today's Software Tools Point to Tomorrow's Tool Systems."

Electronic Design, 23 July 1981, pp. 73-110.

44.

%. % --!iv



.... .. . . . . ...,

(SCH79) Schneidewind and Hoffman. "An Experiment in Software Error Data Collec- .

tion and Analysis." Transactions on Software Engineering, May 1979.

(SHN.-) Shneiderman, B. Software Psychology-Human Factors in Computer and

-.- Information Systems. Winthrop Publishing, 1980.

(SM176) Smith, P. "Fortran Code Auditor Users' Manual", RADC-TR-76-395, Vol. 1,

December 1976, NTIS accession no. A035-778.

(SM179) Smith, C.U. and Browne, J.C. "Performance Specifications and Analysis of

Software Designs", Proc. Conference on Simulation, Measurement and Model-

ing of Computer Systems, Boulder, CO., August 1979.

(SM180) Smith, C.U. "The Prediction and Evaluation of the Performance of Software

from Extended Design Specification", Ph.D. Dissertation, University of Texas

at Austin, August 1980.

(SMI8I) Smith, M. K. and D. R. Hudson, et al. "A Report on a Survey of Validation and -.-

Verification Standards and Practices at Selected Sites." Boeing Computer

Services report BCS-40345, June 1981.

(5OF77) "Software Acquisition Management Guidebook: Validation and Certification",

Air Force document, ESD-TR-77-326, 1977.

(SOF80) "Software Quality Metrics Enhancements", Final report, RADC-TR-80-109,

1980.

(SOF82) "Software Engineering Automated Tools Index." Software Research Associ-

ates, 1982.

(SOF83) "Software Interoperability and Reusability", Final report, Boeing Aerospace

Company document, D182-11340-1, -2, 1983. -&

(SPE79' "Sperry Univac Series 1100 Fortran (ASCII) Programmer Reference," Sperry

Rand Corporation, 1979. p..-.

45.

e~~# ,% .. e 1
e..

.... ...-....-.......-............-. %*'"-.";'" '. , -.,. " "" " ,",- , ;- - ',. ,, -. , ..,..-o .-,- '' -. ;' A, P'- -J--, J,%-*,



np~~~ Ty,-%,?

(SPE82) "Specification of Software Quality Attributes", Interim reports, Boeing Aero-

space Company documents, D182-11310-1, D182-11378-1, 1982.

(STA77) Stanfield and Skrukrud. "Software Aquisition Management Guidebook Soft-

ware Maintenance Volume," System Development Corp., TM-5772/004/02,

November 1977.

(STU73) Stucki, L.G. "Automatic Generation of Self-Metric Software", Proc. 1973

IEEE Symposium on Computer Software Reliability, 94(1973).

(5TU75) Stucki, L. G. and G.L. Foshee. "New Assertion Concepts for Self-Metric

Software", Proc. 1975 Conference on Reliable Software, pp.59-71.

(STU81) Stucki, Leon G. "Using ARGUS on EKS II." Boeing Computer Services, March

1981.

(SUK77) Sukert. "A Multi-Project Comparison of Software Reliability Models." Pro-

ceedings of the AIAA Conference on Computers in Aerospace, 1977.

(SUM) "Summary of Software Testing Measures." Software Research Associates

report SRA TN-843.

(5Y577) "Systematic Software Development and Maintenance (SSDM)", Boeing Com-

puter Services Document #10155, February 1977.

(TAY79) Taylor, R. N., R. L. Merilatt, and L. J. Osterweil. "Integrated Testing and

Verification System for Research Flight Software." Boeing Computer Services

report NASI-15253, July 1979.

(TAY80) Taylor, R.N. "Assertions in Programming Languages", SIGPLAN Notices,

Vol.15, No.1, January 1980, pp. 10 5- 1 14 .

0
(TAY8OB) Taylor, R.N. and L.J. Osteweil. "Anomaly Detection in Concurrent Software

by Static Data Flow Analysis", IEEE Transactions on Software Engineering,
Vol. SE-6, No. 3, pp. 265-278, May 1980.

46.

°.. . . .e *" • ,* .r .....-. . . . . p * " " "" " " "• • " • 
°  . . " .' ' ." , .

.p- - - . -"* .,.. . . -.- ° -. . . s , .c %o -



(TE172) Teichroew, D. "A Survey of Languages for Stating' Requirements for

Computer-Based Information Systems", the University of Michigan, Proceed-

ings of the Fall Joint Computer Conference, 1972, pp. 120 3- 12 24 .

(TE177) Teichroew, D. and E.A. Hershey, III. "PSL/PSA: A Computer-Aided Technique

for Structured Documentation and Analysis of Information Processing Sys-

tems", IEEE Transactions on Software Engineering, SE-3, 1977, (41-48).

(THA76) Thayer, T.A., et al. "Software Reliability Study." RADC report

RADC-TR-76-238, August 1976.

(THR75) "THREADS: A Functional Approach to Project Control", Computer Sciences

Corporation, El Segundo, CA, 1975.

(ULL73) Ullman, J.D. "Fast Algorithms for the elimination of common subexpressions".

Acta Informatica, 2(1973), pp. 191-213.

(WEA78) "Weapon System Software Development." Military Standard MIL-STD-1679

(NAVY), I December 1978.
% i

(WE171) Weinberg, G.M. "Programming as a Social Activity", The Psychology of

Computer Programming. Van Nostrand, Reinhold, 1971.
.o .

(WE177) Weide, B. "A Survey of Analysis Techniques for Discrete Algorithm",

Computing Surveys, Vol.9, No.4, Dec. 1977.

(WE178) Weiss. "Evaluating Software Development by Error Analysis." Naval Research

Lab NRL-8268, December 1978.

(WES79) Western District Utilities Manual, Boeing Computer Services Document N%

#G0031 Rev. A, June 1979. __

(WHI80) White, L.J. and E.I. Cohen. "A Domain Strategy for Computer Program

Testing", IEEE Transactions on Software Engineering, Vol. SE-6, No.3, May

:N1980.

47.4

% % % %INIa I

% % % 

-.



(WIN79) Winograd. "Beyond Programming Languages." Communication of the ACM,

July 1979.. -.-.

(WO079) Woodfield. "An Experiment on Unit Increase in Program Complexity". IEEE

Transactions on Software Engineering, March 1979.

(YEH77) Yeh, R.T., editor. Current Trends in Programming Methodology, Volume 11. *-'

Prentice-Hall, Inc., 1977.

(YOU77) Yourdon, E. Structured Walk-throughs. Yourdon, Inc. 1977.

A.

8.-

. p.

I..

'% -o

.

*. ,. .. ...• . ....... ... ........- . ...... .......... •.-. .,....,.. ... ,..'...-,., . ,,.,,,,



00

MISSION
Of

Rovme Air Development Center
RAVC ptaA6 and execu.teA wetch, devetopmest, te~At and
6etee~ted ac.quJAition ptwg~am in 6qppot 06 Command, Confc'wL
Comnn1icoatw and I nteLUtence (C31) activiteA. Tehnijcat
and engineeAing 6uppo~t w~tiin atema 06 teeduticat competence Z
i4 pLovided to BSV Ptog'wui O6ieeu (PO.6) and othzeA ESP
etement6. The pt'uiNt~a tecitnica m"4ion vAeaA ate
commrbicatonA etect-oanetic guidanean eonftot' Au&4-
veL-tnee oj gtowtd and deAO4pa*ce objecUt, intetUgejwe datat
coIItt(0fl and hantd~ng, in6ohJmaton ayatem technotogy,
iono.6pheA&z ptopagaetion, &6otid atate. ac.enceA, miotomvAe
phyhicA and etect&oniJc xe~aiatt, maintainabitity and
comnpatibiU.Lt.




